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A B S T R A C T

Jalysus wickhami Van Duzee is the most abundant predator in North Carolina flue-cured tobacco production but
information on the effect of contemporary pest management practices and interactions with other arthropods is
lacking. We measured the effect of systemic imidacloprid on J. wickhami in field experiments during 2015 and
2016 by surveying its abundance, the abundance of its prey; the pests Heliothis virescens (Fabricus), Manduca
sexta L., and Manduca quinquemaculata (Haworth, 1803); and other predatory arthropods in the agro-ecosystem.
Systemic imidacloprid applications did not reduce J. wickhami abundance nor increase the abundance of H.
virescens, M. sexta, and M. quinquemaculata, indicating natural control was not affected. J. wickhami abundance
was positively correlated with the abundance of prey and predators from another feeding guild, suggesting
species interactions have significant implications for the predators.

1. Introduction

Flue-cured tobacco (Nicotiana tabacum L.) is the most valuable crop
produced in North Carolina (NC), grown on over 67,000 ha with a total
value of ca. $647 million USD in 2016 (USDA NASS, 2018). Insecticides
represent a significant cost for tobacco growers (Bullen and Fisher,
2018), and are applied to the soil as prophylactic systemic treatments
targeting early-season pests and foliar treatments targeting mid and late
season pests (Burrack and Toennisson, 2018). Recent research has re-
vealed that unnecessary insecticide applications are often made by to-
bacco growers when treatment thresholds are not observed, which in-
creases pest management costs and reduces the abundance of natural
enemies (Slone and Burrack, 2016). These unnecessary applications
may, therefore, potentially increase tobacco pest populations.

Tobacco has a relatively small group of associated herbivores
(Burrack and Toennisson, 2018) and natural enemies (Jackson et al.,
1989). Jalysus wickhami Van Duzee (Hemiptera: Berytidae) is the most
abundant predatory arthropod in NC flue-cured tobacco fields and feeds
on the pests Myzus persicae (Sulzer, 1776) (Hemiptera: Aphididae),
Heliothis virescens (Fabricius, 1777) (Lepidoptera: Noctuidae), and
Manduca spp. (Lepidoptera: Sphingidae): M. sexta (Linnaeus, 1763) and
M. quinquemaculata (Haworth, 1803) (Elsey and Stinner, 1971; Lawson,
1959). J. wickhami can consume up to 1000 Manduca spp. eggs and
2000 H. virescens eggs during an 80-day lifetime (Elsey and Stinner,

1971; Jackson and Kester, 1996), potentially providing a massive
amount of natural control. The basic biology of J. wickhami has been
studied (Elsey, 1974a, 1974b; 1973; Elsey and Stinner, 1971), but there
is a paucity of information regarding its compatibility with con-
temporary tobacco pest management practices and interactions with
other arthropods.

Conservation biological control, the practice of enhancing re-
production, survival, and efficacy of natural enemies (DeBach, 1964;
Ehler, 1998; Jonsson et al., 2008), has the potential to contribute to
management of arthropod pests within the framework of integrated
pest management programs (Naranjo et al., 2015; Romeis et al., 2018;
Stern et al., 1959). Conservation biological control (CBC) can be im-
plemented by modifying pesticide use patterns or manipulating the
environment to favor natural enemies (Eilenberg et al., 2001; Gentz
et al., 2010; Tscharntke et al., 2016; Varenhorst and O’Neal, 2012;
Veres et al., 2013). For CBC to be effective in improving pest man-
agement, knowledge of the life-histories of natural enemies of interest is
required, including the biology and ecology of the organisms within a
select agro-ecosystem (Foti et al., 2017; Letourneau, 1998; Schmitz and
Barton, 2014; Sigsgaard et al., 2013). Similarly, information detailing
the effects of crop management tactics, including insecticide use, on
natural enemies is required for management decisions promoting bio-
logical control (Barbosa, 1998; Biondi et al., 2015; Croft, 1990; Jonsson
et al., 2008; Tamburini et al., 2016).
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Systemic applications of neonicotinoid insecticides have been
widely adopted by flue-cured tobacco growers for early-season pest
management over the last 20 years (Toennisson and Burrack, 2017).
Applied as a greenhouse tray drench prior to transplant, imidacloprid is
frequently used as a prophylactic against M. persicae (Merchán and
Burrack, 2017), Epitrix hirtipennis (Melsheimer) (Coleoptera: Chry-
somelidae) (Burrack and Toennison, 2018), and Frankliniella fusca
(Hinds) (Thysanoptera: Thripidae), the primary vector of tomato
spotted wilt virus in NC (Groves et al., 2001). The xylem-mobile in-
secticide is translocated throughout the plant, and target pests are ex-
posed when they consume the treated plant tissue and sap. J. wickhami
also facultatively feed on tobacco plants in addition to insect prey,
taking drinks of sap. J. wickhami may be exposed to carbamate (aldi-
carb, aldoxycarb) and organophosphate (disulfoton, fostheitane) in-
secticides when applied systemically (Semtner, 1979), but these are no
longer used in tobacco production and similar exposure to imidacloprid
has not been confirmed.

Understanding the ecology and biology of natural enemies, as well
as their interaction and compatibility with pest management tactics, is
key when incorporating conservation biological control strategies into
integrated pest management programs. We conducted small plot ex-
periments over two years in two locations with the goal of determining
whether a common pest management tactic in North Carolina flue-
cured tobacco production, systemically applied imidacloprid, was
compatible with J. wickhami. We measured the abundance of J. wic-
khami and its prey, H. virescens, and Manduca spp., to assess possible
effects of imidacloprid on J. wickhami biological control. We also
evaluated the potential for other arthropods to explain J. wickhami
abundance.

2. Methods

2.1. Experimental design

We conducted field experiments in 2015 and 2016 at the North Carolina
Department of Agriculture and Consumer Services Lower Coastal Plain
Research Station (Lenoir County, North Carolina 35.297404, −77.574259)
and Upper Coastal Plain Research Station (Edgecombe County, North
Carolina, 35.894264, −77.680346). Organically produced tobacco seed-
lings (var. NC 196) were used to ensure plant material was free of imida-
cloprid residues. Plants were left untreated or treated with Admire Pro
(42.8% imidacloprid) (Bayer CropScience, Research Triangle Park, North
Carolina) at a rate of 17.76 ml/1000 plants using one of two systemic ap-
plication methods: (1) a greenhouse tray drench less than two days prior to
transplant, immediately rinsed into growing media; and (2) a soil water
drench applied at transplant. Plots consisted of eight 15.24m long rows
with 25 plants per row, spaced 1.22m apart, arranged in a randomized
complete block design with four replicates per treatment.

We transplanted tobacco seedlings on 4 May 2015 (Lenoir County),
8 May 2015 (Edgecombe County), 25 April 2016 (Lenoir County), and
27 April 2016 (Edgecombe County) and followed standard agronomic
practices for flue-cured tobacco production in North Carolina (Brown
et al., 2018), with the exception that no insecticides, aside from sys-
temic imidacloprid treatments, were applied.

2.2. Insect assessment

We surveyed plots weekly for focal insects (J. wickhami adults and
nymphs, H. virescens larvae, and Manduca spp. larvae), and any other
predatory arthropods by inspecting entire tobacco plants. We inspected
all plants in rows four and five early in the season (15 May to 27 June
2015, 23 May to 22 June 2016), when plants were small and insect
abundance was low. Thereafter, all plants in row five were inspected
through the first week of August (1 August 2015, 1 August 2016), at
which point North Carolina flue-cured tobacco harvest is underway. We

deployed yellow sticky traps in 2015 to monitor J. wickhami, but they
proved to be ineffective (see Appendix A).

2.3. Statistical analyses

We standardized all insect counts (focal insects and other predatory
arthropods) from plant inspections by row to account for the different
number of rows inspected earlier (two) and later (one) in the season.
Season-long abundance and weekly means were log-transformed (log
+1) for analysis, but non-transformed data are presented for clarity. All
statistical analyses were performed in SAS v. 9.4 (SAS Institute, Cary
NC). Degrees of freedom for all analysis of variance tests were calcu-
lated using the procedure described by Kenward and Roger (1997).

The influence of imidacloprid treatments (tray drench, transplant
drench, untreated control) on focal insect season-long abundance was
analyzed independently using a linear mixed model (PROC MIXED). For
each focal species, a full model was developed with the season-long
abundance of the insect as the response variable, insecticide treatment
as the fixed variable, and with the following random effects: year, lo-
cation, the interaction of year and location, and block nested within
location.

To assess the influence of insecticide treatment on focal insect
abundance throughout the growing season, we used a linear mixed
model (PROC MIXED) with repeated measures. We fit the following
model for each focal species: weekly mean insect abundance as the
response variable, insecticide treatment, week after treatment, and
their interactions as fixed variables, and the following random vari-
ables: year, location, the interaction of year and location, and block
nested within location. The repeated statement utilized compound
symmetry structure and the subject was the interaction of the plot by
location by year.

We performed stepwise regression (PROC GLMSELECT) to de-
termine the influence of other arthropods on J. wickhami season long
abundance. We included the following predictor variables: “chewing”
predators, the sum of Chrysopidae (Neuroptera) and Coccinellidae
(Coleoptera); “piercing-sucking” predators, the sum of hemipteran fa-
milies Anthocoridae, Geocoridae, Nabidae, and Reduviidae; Oxyopidae;
H. virescens; Manduca spp. The variables were assessed with full inter-
actions and J. wickhami season long abundance was log-transformed.
Stepwise model selection was used, and effect inclusion in the model
ended when none of the effects outside of the model had significant F-
tests (Cohen, 2006). The default select and stop criterion, based on
Schwarz Bayesian information criterion, was used for the model, and
the model with the lowest Akaike's information criterion values was
chosen (SAS Institute, 2012). We quantified the relationship between
predictor variables and J. wickhami abundance chosen by stepwise re-
gression through linear regression using PROC REG. We calculated
variance inflation factor (VIF) scores for each term to ensure our model
was not confounded by multicollinearity.

3. Results

During 2015, 2016, we counted a total of 3885 J. wickhami, which
was 80.4% and 82.8%, respectively, of all predatory arthropods sur-
veyed (Table 1, Fig. 1). Other predatory taxa surveyed included mem-
bers of the families Chrysopidae (Neuroptera), Coccinellidae (Co-
leoptera), Anthocoridae (Hemiptera), Geocoridae (Hemiptera), Nabidae
(Hemiptera), Reduviidae (Hemiptera) and Oxyopidae (Aranae),
(Table 1, Fig. 1). We counted a total of 1599 H. virescens and 1469
Manduca spp. larvae during 2015 and 2016.

There were no differences between imidacloprid treatments in the
season-long abundance of J. wickhami (F=1.19; df= 2, 35.8;
P=0.3156), H. virescens (F=0.13; df= 2, 35.7; P=0.8798), and
Manduca spp. (F=2.03; df= 2, 36; P=0.1464) (Table 2).

Imidacloprid treatment throughout the season was not significant
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for all focal insects (J. wickhami: F=1.36; df= 2, 531; P=0.2570),
(H. virescens: F=0.24; df= 2, 531; P=0.7865), (Manduca spp.:
F=0.461; df= 2, 531; P=0.4601), and there were no significant
treatment by week interactions. Abundance of all focal insects varied
significantly over time (J. wickhami: F=146.96; df= 11, 531;
P<0.0001), (H. virescens: F=63.07; df= 11, 531; P<0.0001),
(Manduca spp.: F=99.34; df= 11, 531; P<0.0001). J. wickhami
abundance was highest 10 through 12 weeks after treatment (WAT),
while H. virescens abundance peaked eight WAT and Manduca spp.
abundance was greatest 11 WAT (Fig. 1).

The model selection process for stepwise regression was stopped at
the third step with the final model including H. virescens, Manduca spp.,
and “chewing” predators (AIC=−73.63994). The linear regression
model including H. virescens, Manduca spp., and “chewing” predators
was significant (F=14.77, df= 3,44; P < 0.0001), explaining 50.2%
of J. wickhami season long abundance variance. All predictor variables
were positively correlated with J. wickhami, with Manduca spp. ex-
plaining the greatest amount of variability, followed by “chewing”
predators and H. virescens explaining the least amount (Table 3).

4. Discussion

Modifying insecticide use to conserve natural enemies is one ap-
proach to conservation biological control (Biondi et al., 2012; Newsom
et al., 1976; Roubos et al., 2014), and thus it is necessary to understand
how insecticide use affects natural enemies. Systemic insecticide ap-
plications generally reduce the risk of exposure to non-target organisms
compared to other application methods, but natural enemies feeding on
pollen and nectar may ingest insecticides translocated to those tissues
(Barbosa et al., 2017; Cloyd and Bethke, 2011; Smith and Krischik,
1999). J. wickhami must consume plant sap for long-term survival
(Jackson and Kester, 1996) and therefore may be exposed to xylem-
mobile imidacloprid (Jeschke et al., 2011). Laboratory research de-
monstrates that exposure to tobacco leaves treated systemically with
imidacloprid reduces J. wickhami survival (Nelson, 2018). This study
incorporated the two most commonly used application methods for
imidacloprid in tobacco: a greenhouse tray drench prior to transplant
(most common) and an in furrow application (less common). Foliar
imidacloprid applications in tobacco are extremely rare. J. wickhami
abundance in either imidacloprid treatment did not differ from un-
treated controls (Table 2) nor did H. virescens and Manduca spp. larval
abundance, indicating that the method of systemic application does not
influence the potential for exposure to those insects. Absolute J. wic-
khami means trended higher in untreated controls but were not sig-
nificantly different from imidacloprid treatments due to interplot
variability.

J. wickhami populations did not increase appreciably until seven
weeks after transplant, at which point imidacloprid titers in plants may
be reduced to concentrations incapable of producing acute toxicity.
Likewise, imidacloprid efficacy against Myzus persicae eventually de-
creases post-transplant (Semtner and Srigiriraju, 2005), as titers of
imidacloprid probably decrease throughout the season as observed in

Table 1
Summary of North Carolina flue-cured tobacco predatory arthropods from plant
inspections in 2015 and 2016.

Predator Taxa Count (Proportion)

2015 2016

Anthocoridae (Hemiptera) 3 (0.0026) 3 (0.00084)
Jalysus wickhami (Berytidae: Hemiptera) 939 (0.80) 2946 (0.83)
Chrsyopidae (Neuroptera) 3 (0.0026) 18 (0.0051)
Coccinellidae (Coleoptera) 20 (0.017) 357 (0.10)
Geocoridae (Hemiptera) 169 (0.14) 171 (0.048)
Nabidae (Hemiptera) 7 (0.0060) 27 (0.0076)
Oxyopidae (Aranae) 9 (0.0077) 25 (0.0070)
Reduviidae (Hemiptera) 15 (0.013) 0 (0)
Sum 1168 3557

Table 2
Combined 2015, 2016 season-long mean (± SEM) focal insect abundance in
response to imidacloprid treatments. Means within rows were not significantly
different from each other (P > 0.05).

Insect Imidacloprid Treatment

Untreated Control Tray Drench Transplant Water

Jalysus wickhami 107.8 ± 28.1 61.1 ± 9.1 69.2 ± 10.6
Heliothis virescens 30.3 ± 3.5 30.0 ± 3.1 31.1 ± 4.1
Manduca spp 33.1 ± 9.3 22.4 ± 4.5 34.0 ± 11.3

Fig. 1. Combined 2015, 2016 Jalysus wickhami (A), Heliothis virescens (B), and
Manduca spp. (C) weekly mean (± SEM) abundance.

Table 3
Results of linear regression evaluating arthropod influence on Jalysus wickhami abundance.

Variable Partial R2 Estimate (SE) t P VIF

Manduca spp. season-long abundance 0.319 0.0051 (0.0012) 4.41 < 0.0001 1.04727
“chewing” predators season-long abundance 0.132 0.0053 (0.0020) 2.62 0.0119 1.14952
H. virescens season-long abundance 0.051 0.062 (0.030) 2.11 0.0403 1.10742

VIF: variance inflation factor.
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studies on other crops (Huseth et al., 2014).
Early-season imidacloprid applications are not used to manage le-

pidopteran tobacco pests due to limited toxicity (Lagadic et al., 1993;
Wink and Theile, 2002). Therefore, any differences in H. virescens or
Manduca spp. abundance between treatments is unlikely to be the direct
result of systemically-applied imidacloprid. We found the abundance of
H. virescens and Manduca spp. did not differ between insecticide treat-
ments, indicating that other factors regulating pest caterpillar popula-
tions were unaffected by imidacloprid. As no other pest management
tactics were used in our experiments, it is reasonable to conclude that
biological control provided by natural enemies was not affected. Visual
inspections of plants in 2015 and 2016 confirmed that J. wickhami is the
most abundant predator in North Carolina tobacco agro-ecosystems,
therefore we infer that the predator's role in regulating H. virescens and
Manduca spp. was not influenced by imidacloprid.

Predator populations may respond to variations in prey abundance,
typically exhibiting positive numerical responses through population
growth as prey abundance increases (Costa et al., 2017; Midthassel
et al., 2014; Solomon, 1949). Season long abundance of H. virescens and
Manduca spp. were two effects retained in a model resulting from
stepwise multivariate regression, and our results indicate that J. wic-
khami abundance was positively correlated with the abundance of H.
virescens and Manduca spp. larvae (Table 3). It is important to note that
both variables were derived from larval counts, while J. wickhami ty-
pically consumes eggs (Elsey and Stinner, 1971). However, we can as-
sume that most lepidopteran larva surveyed originated from eggs laid
within the same plots, thus increasing caterpillar abundance should
correlate with increased J. wickhami prey abundance.

Generalist predators are thought to exhibit a weak functional re-
sponse to target prey densities (Holling, 1966; Luck, 1984; Prasad and
Snyder, 2006; Van Maanen et al., 2012), but alternative food resources
can help overcome this by causing a positive numerical response and
increasing the number of predators consuming prey (Eubanks et al.,
2000; Eubanks and Denno, 1999; Leman and Messelink, 2015; Oveja
et al., 2016). Numerical responses are driven by predator aggregation
(Döbel and Denno, 1994; Mausel et al., 2017) and reproduction (Amiri-
Jami and Sadeghi-Namaghi, 2014; Dixon and Guo, 1993). Our results
indicate that J. wickhami respond positively to the presence of prey and
thatManduca spp. abundance explained more variance than H. virescens
abundance (Table 3). This may be due to the fact that peak J. wickhami
abundance coincided with peak Manduca spp. abundance (Fig. 1). Fu-
ture research should investigate the potential of providing alternative
foods earlier in the season to increase J. wickhami abundance.

Interactions between predators may be antagonistic, additive, or
synergistic, and their outcomes can have significant biological control
implications. J. wickhami abundance was also positively correlated with
“chewing” predators (Table 3). Investigating the interaction between J.
wickami and “chewing” predators was not one of our explicit research
goals and future efforts could clarify this by assessing whether the
predators respond to prey abundance in a manner similar to J. wic-
khami, the potential for intra-guild predation (Arim and Marquet, 2004;
Gagnon et al., 2011; Polis et al., 1989) or synergistic interactions be-
tween the predators (Finke and Snyder, 2010; Losey and Denno, 1998).

Our efforts presented herein were partially focused on determining
the effects of early-season systemic imidacloprid applications on J.
wickhami and predation on Heliothis virescens and Manduca spp. To ac-
complish this, systemic imidacloprid treatments were the only pest
management tactic employed and thus our results are not re-
presentative of North Carolina commercial flue-cured tobacco produc-
tion. Preventing tobacco caterpillar pests from surpassing economic
thresholds typically requires 1–3 foliar insecticide applications per
year; these are linked to declines in J. wickhami abundance (Slone and
Burrack, 2016). Our plots received no foliar insecticide applications and
therefore the abundances of caterpillars and J. wickhami were higher
than those typical in commercial tobacco fields. Future efforts assessing
the toxicity of commonly used foliar insecticides to J. wickhami could be

utilized in developing recommendations for insecticides compatible
with the predators.

Plant-feeding can enhance predator arthropod life-history traits or
may be required for development and survival, as in the case of J.
wickhami. Systemically applied insecticides have the potential to cause
effects detrimental to the predator, but our results indicate that imi-
dacloprid applications are compatible with J. wickhami. As such, this
research should function as a starting point for improving conservation
biological control with J. wickhami in contemporary flue-cured tobacco
production, as detailed knowledge of the life systems of natural enemies
is required for successful implementation.
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Supplementary data to this article can be found online at https://
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Appendix A

During 2015 we deployed Pherocon® Unbaited AM yellow sticky
traps (Trece, Inc., Adair, OK, USA) to monitor predatory arthropods
including J. wickhami. Two traps were placed equidistant from each
other between rows four and five of replicate plots and were suspended
directly above the canopy of tobacco plants by attaching them to
wooden stakes with binder clips, adjusting their height throughout the
season. We deployed and changed traps weekly from 15 May to 5
August. Yellow sticky traps captured a total of seven J. wickhami during
2015. Other predatory taxa captured included Chrysopidae (4)
(Neuroptera), Coccinellidae (66) (Coleoptera), Anthocoridae (4)
(Hemiptera), Geocoridae (18) (Hemiptera), Nabidae (5) (Hemiptera),
and Oxyopidae (5) (Aranae). While retrieving yellow sticky traps used
to monitor arthropods in tobacco fields for another project in 2016, we
observed multiple J. wickhami walking across the surface of the sticky
traps without becoming entrapped (see Supplementary Material: j
wickhami sticky trap video). This may help explain the ineffectiveness
of yellow sticky traps for monitoring J. wickhami in 2015, although
similar monitoring methods have been effective in monitoring the
predators in tomatoes (Pease and Zalom, 2010).

Reported hosts of J. wickhami are predominantly characterized as
“glandular-hairy” (Wheeler and Henry, 1981), and their propensity for
association with such plants may be partially explained by their
anatomy. Jalysus wickhami have two morphological features which have
been postulated to be involved in their ability to travel across “sticky
plant” surfaces without becoming entrapped. In his monograph of
Berytidae of the Western hemisphere, Henry (1997) postulated that the
dentate claws may allow berytids to “tip-toe” on sticky plant surfaces or
grip trichome stems, facilitating their radiation to plants covered in
trichomes. Similarly, Southwood (1986) speculated that the elongate
legs and swollen femoral tips provide “enlarged tibia-femoral articu-
lation”, causing an “increase in the leverage to swing the apex of the
leg.” Given that the surface of a yellow sticky trap is considerably more
uniform than the surface of a tobacco leaf or other plant covered and
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glandular trichomes, we speculate that elongated legs and enlarged
tibia-femoral articulation provide J. wickhami the ability to maneuver
on “sticky plants”. Assessing the mechanics of J. wickhami locomotion
on sticky plant surfaces may help elucidate other potential mechanisms
used by insects for movement, like those reported by Voigt et al. (2007)
and Voigt and Gorb (2010, 2008).
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